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Abstract

We present an algebraic proof of the irreducibility criteria for the
generalized principal series of unitary groups over a non-archimedean
local field.

1 Introduction

The aim of this paper is to provide a uniform and simple irreducibility criteria
for the induced representations of the form δ ¸ σ, where δ stands for an
irreducible essentially square-integrable representation of the general linear
group and σ stands for a discrete series representation of the unitary group
over a non-archimedean local field. Induced representations of such a form
are called the generalized principal series, and play an important role in the
representation theory of reductive p-adic groups.

We note that reducibility of the generalized principal series of symplectic
and odd orthogonal groups has been described in [8], in terms of the Mœglin-
Tadić classification, using an approach mostly based on the intertwining op-
erators method. On the other hand, we use purely algebraic methods and all
our proofs are also valid in the symplectic and odd orthogonal group case,
so the results of this paper can also be regarded as a shorter and algebraic
version of [8].

The main strategy follows the one initiated in [8] and [4]: to prove the
observed representation is irreducible we show that every irreducible subquo-
tient is isomorphic to its Langlands quotient, and to prove the reducibility we
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construct an irreducible subquotient non-isomorphic to the Langlands quo-
tient. Our approach is based on the calculation of the Jacquet modules of
induced representations, and uses embeddings of discrete series provided in
Sections 7 and 8 of [10]. An advantage of this approach is that one could ex-
pect to extend our results to the case of odd GSpin and metaplectic groups,
as soon as one extends the discrete series classification there.

In the following section we present some preliminaries, and in the next
three sections we provide a description of the reducibility for the generalized
principal series, using a case-by-case consideration.

2 Preliminaries

Let F denote a non-archimedean local field and let F 1 a separable quadratic
extension of F . Let us denote by θ the non-trivial F -automorphism of F 1.
We fix an anisotropic unitary space Y0 over F 1 and consider the Witt tower
of unitary spaces Vn based on Y0.

If dimF 1pY0q is odd, for each 2n ` 1 ě dimF 1pY0q there is a unique space
Vn in the Witt tower of dimension 2n` 1, and we denote the unitary group
of this space by Gn.

If dimF 1pY0q is even, for each 2n ě dimF 1pY0q there is a unique space Vn
in the Witt tower of dimension 2n, and we denote the unitary group of this
space by Gn.

We fix a minimal parabolic subgroup inGn and consider standard parabolic
subgroups with respect to this minimal parabolic subgroup. The Levi fac-
tors are naturally isomorphic to GLpn1, F

1q ˆ ¨ ¨ ¨ ˆGLpnk, F
1q ˆGn1 , where

GLpm,F 1q denotes the general linear group of rank m over F 1. If δi is a
representation of GLpni, F

1q, for i “ 1, 2, . . . , k, τ a representation of Gn1 ,
and M – GLpn1, F

1q ˆ ¨ ¨ ¨ ˆGLpnk, F
1q ˆGn1 we denote by δ1ˆ ¨ ¨ ¨ ˆ δk ¸ τ

the normalized parabolically induced representation IndGn
M pδ1b ¨ ¨ ¨b δkb τq.

We use a similar notation to denote a parabolically induced representation
of GLpm,F 1q.

By IrrpGnq we denote the set of all irreducible admissible representations
of Gn. Let RpGnq denote the Grothendieck group of admissible representa-
tions of finite length of Gn and define RpGq “ ‘ně0RpGnq. In a similar way
we define IrrpGLpn, F 1qq and RpGLq “ ‘ně0RpGLpn, F

1qq.
For σ P IrrpGnq and 1 ď k ď n1, where n1 denotes the Witt index of Vn,

we denote by rpkqpσq the normalized Jacquet module of σ with respect to the
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parabolic subgroup having the Levi subgroup isomorphic toGLpk, F 1qˆGn´k.
We identify rpkqpσq with its semisimplification in RpGLpk, F 1qqbRpGn´kq and
consider

µ˚pσq “ 1b σ `
n1
ÿ

k“1

rpkqpσq P RpGLq bRpGq.

We denote by ν a composition of the determinant mapping with the nor-
malized absolute value on F 1. Let ρ P RpGLq denote an irreducible cusp-
idal representation. By a segment we mean a set of the form rρ, νmρs :“
tρ, νρ, . . . , νmρu, for a non-negative integer m. The induced representation
ρ ˆ νρ ˆ ¨ ¨ ¨ ˆ νmρ has a unique irreducible subrepresentation, denoted by
δprρ, νmρsq, which is essentially square-integrable.

For an irreducible smooth representation π P RpGLq, let qπ denote the
representation g ÞÑ rπpθpgqq, where rπ stands for the contragredient represen-
tation of π. The representation π is called F 1{F -selfdual if π – qπ.

Note that, by the Mœglin-Tadić classification, if a twist by a character
of the form νx, with x P R, of some irreducible unitarizable cuspidal rep-
resentation ρ P RpGLq appears in the cuspidal support of a discrete series
σ P RpGq, then ρ is an F 1{F -selfdual representation.

Let us recall the structural formula ([9] and [7, Section 15]).

Lemma 2.1. Let ρ P RpGLq be an irreducible cuspidal representation and
k, l P R such that k ` l P Zě0. Let σ P RpGq be an irreducible admissible
representation. Write µ˚pσq “

ř

π,σ1 π b σ
1. Then the following holds:

µ˚pδprν´kρ, νlρsq ¸ σq “

l
ÿ

i“´k´1

l
ÿ

j“i

ÿ

π,σ1

δprν´iqρ, νkqρsq ˆ δprνj`1ρ, νlρsq ˆ π

b δprνi`1ρ, νjρsq ¸ σ1.

We omit δprνxρ, νyρsq if x ą y.

We use the subrepresentation version of the Langlands classification, and
realize a non-tempered irreducible representation π of Gn as the unique ir-
reducible (Langlands) subrepresentation of an induced representation of the
form δ1ˆ δ2ˆ ¨ ¨ ¨ˆ δk¸ τ , where τ is an irreducible tempered representation
of some Gt, and δ1, δ2, . . . , δk P RpGLq are irreducible essentially square-
integrable representations such that epδ1q ď epδ2q ď ¨ ¨ ¨ ď epδkq ă 0, where
epδiq is such that ν´epδiqδi is unitarizable. We write π “ Lpδ1, δ2, . . . , δk; τq.
We also use a similar classification for the general linear groups.
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The following result ([3, Lemma 5.5]), whose proof carries directly to the
unitary group case, is used several times in the paper.

Lemma 2.2. Suppose that π P RpGnq is an irreducible representation, λ an
irreducible representation of the Levi subgroup M of Gn, and π is a subrep-
resentation of IndGn

M pλq. If L ą M , then there is an irreducible subquotient
ρ of IndLMpλq such that π is a subrepresentation of IndGn

L pρq.

By the classification of discrete series ([5, 7]), which holds unconditionally
due to [1], [6, Théorème 3.1.1] and [2, Theorem 7.8], a discrete series σ P
Gn corresponds to an admissible triple which consists of the Jordan block,
the partial cuspidal support, and the ε-function. For more details on these
invariants we refer the reader to [7] and [8].

Through the paper we fix a discrete series σ, and we denote the corre-
sponding admissible triple by pJord, σcusp, εq. For an irreducible F 1{F -selfdual
cuspidal representation ρ1 of GLpn1, F

1q we write Jordρ1 “ tx : px, ρ1q P
Jordu. If Jordρ1 ‰ H and x P Jordρ1 , denote x “ maxty P Jordρ1 : y ă xu,
if it exists. Domain of the ε-function is a subset of JordYpJordˆ Jordq, and
to define the ε-function on the elements of Jordˆ Jord, it is enough to define
the ε-function on the elements of the form ppx , ρ1q, px, ρ1qq.

We fix an irreducible cuspidal representation ρ P RpGLq, and deter-
mine the reducibility criterion for the induced representation of the form
δprνxρ, νyρsq¸σ, y´x P Z and x`y ě 0, called the generalized principal se-
ries. We emphasize that in RpGq holds δprνxρ, νyρsq¸σ “ δprν´yqρ, ν´xqρsq¸σ.
Reducibility in the case x “ ´y is an integral part of the discrete series clas-
sification, so we assume that x` y ą 0. Also, it is rather well-know, and can
be easily checked following the same lines as in the proof of Proposition 3.1,
that δprνxρ, νyρsq ¸ σ is irreducible if ρ is not F 1{F -selfdual or if ρ is F 1{F -
selfdual but for α such that ναρ ¸ σcusp reduces we have x ´ α R Z. Thus,
through the paper we can also assume that ρ is F 1{F -selfdual and x´α P Z.

3 Non-positive case

Suppose that 0 ď a ď b and for α such that ναρ ¸ σcusp reduces we have
a´ α P Z. In this section we determine reducibility for δprν´aρ, νbρsq ¸ σ.

First we note that if r2a` 1, 2b` 1sX Jordρpσq “ H, by the classification
of discrete series the induced representation δprν´aρ, νbρsq ¸ σ contains two
discrete series subrepresentations, so it reduces.
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Proposition 3.1. Suppose that t2a ` 1, 2b ` 1u Ď Jordρpσq and for every
x P JordρpσqXx2a`1, 2b`1s such that x is defined we have εppx , ρq, px, ρqq “
´1. Then the induced representation δprν´aρ, νbρsq ¸ σ is irreducible.

Proof. Let us first show that there are no irreducible tempered subquotients.
By the classification of discrete series, part of the cuspidal support of σ
consisting of elements of the form νxρ, x P R, can be written as

p

k
ď

i“1

rν´c2i´1ρ, νc2iρsq
ď

p

l
ď

j“1

rνα´j`1ρ, νdjρsq,

where all k, l, ci, dj are non-negative, ci ‰ dj for all i, j, ci ‰ cj for i ‰ j,
dj ą dj`1 for j “ 1, . . . , l ´ 1, ci ą α ´ l for all i, and α ´ l ` 1 ą 0.
Then we have Jordρpσq “ t2ci ` 1 : i “ 1, . . . , 2ku Y t2dj ` 1 : j “
1, . . . , lu Y t2pα ´mq ´ 1 : m P Z, l ď m,α ´m ě 1u. From 2a ` 1, 2b ` 1 P
Jordρpσq we obtain that δprν´aρ, νbρsq ¸ σ does not have discrete series sub-
quotients. Using similar cuspidal support considerations, we deduce that an
irreducible tempered subquotient of δprν´aρ, νbρsq ¸ σ is a subrepresenta-
tion of δprν´bρ, νbρsq ¸ π, for an irreducible representation π. This implies
µ˚pδprν´aρ, νbρsq ¸ σq ě δprν´bρ, νbρsq b π, and using the structural formula
and the square-integrability of σ we deduce that µ˚pσq contains an irreducible
constituent of the form δprνa`1ρ, νbρsqbπ1. From [10, Proposition 7.2] follows
εppp2b` 1q , ρq, p2b` 1, ρqq “ 1, a contradiction.

Now we determine the non-tempered irreducible subquotients. Every such
irreducible subquotient is of the form Lpδprνx1ρ1, ν

y1ρ1sq, . . ., δprν
xmρm, ν

ymρmsq;
τq where xi ` yi ă 0 for i “ 1, . . . ,m, and xi ` yi ď xi`1 ` yi`1 for
i “ 1, . . . ,m ´ 1. Since Lpδprνx1ρ1, ν

y1ρ1sq, . . . , δprν
xmρm, ν

ymρmsq; τq is a
subrepresentation of

δprνx1ρ1, ν
y1ρ1sq ¸ Lpδprν

x2ρ2, ν
y2ρ2sq, . . . , δprν

xmρm, ν
ymρmsq; τq,

it follows that µ˚pδprν´aρ, νbρsq ¸ σq contains

δprνx1ρ1, ν
y1ρ1sq b Lpδprν

x2ρ2, ν
y2ρ2sq, . . . , δprν

xmρm, ν
ymρmsq; τq.

We directly obtain ρ1 – ρ, ´b ď x1 and a ď y1. If a ă y1, it follows that µ˚pσq
contains an irreducible constituent of the form δprνa`1ρ, νxρsqbπ1, for x ă b,
contradicting [10, Proposition 7.2]. Thus, Lpδprνx2ρ2, ν

y2ρ2sq, . . . , δprν
xmρm,

νymρmsq; τq is contained in δprν´x1`1ρ, νbρsq ¸ σ. If m ě 2, in the same way
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we conclude that y2 “ x1, which leads to x2 ` y2 ď x1 ` y1, a contradiction.
Thus, m “ 1 and δprν´x1`1ρ, νbρsq ¸ σ contains an irreducible tempered
subquotient. In the same way as in the first part of the proof we deduce
that this is possible only if x1 “ ´b. Thus, Lpδprν´bρ, νaρsq;σq is a unique
irreducible subquotient of δprν´aρ, νbρsq ¸ σ, and it is well-known that it
appears with multiplicity one. Thus, δprν´aρ, νbρsq ¸ σ is irreducible.

Lemma 3.2. Suppose that r2a` 1, 2b` 1s X Jordρpσq ‰ H, but t2a` 1, 2b`
1u Ę Jordρpσq. Then the induced representation δprν´aρ, νbρsq ¸ σ reduces.

Proof. Note that Lpδprν´bρ, νaρsq;σq is contained in δprν´aρ, νbρsq¸σ. Let us
first assume that 2a`1 R Jordρpσq. Let xm “ minpr2a`1, 2b`1sXJordρpσqq.
It is easy to see, using [10, Theorem 8.2], that there is a discrete series σ1 such

that σ is a unique irreducible subrepresentation of δprνa`1ρ, ν
xm´1

2 ρsq ¸ σ1.

Furthermore, σ is a unique irreducible subquotient of δprνa`1ρ, ν
xm´1

2 ρsq¸σ1
which contains an irreducible constituent of the form δprνa`1ρ, ν

xm´1
2 ρsq b π

in the Jacquet module with respect to the appropriate parabolic subgroup.
If xm ‰ 2b` 1, note that Lpδprν´bρ, ν

xm´1
2 ρsq;σ1q is contained in

δprν´bρ, νaρsqˆδprνa`1ρ, ν
xm´1

2 ρsq¸σ1 “ δprν´aρ, νbρsqˆδprνa`1ρ, ν
xm´1

2 ρsq¸σ1,

so there is an irreducible subquotient π1 of δprνa`1ρ, ν
xm´1

2 ρsq ¸ σ1 such that

Lpδprν´bρ, ν
xm´1

2 ρsq;σ1q is contained in δprν´aρ, νbρsq ¸ π1.

Obviously, µ˚pLpδprν´bρ, ν
xm´1

2 ρsq;σ1qq contains an irreducible constituent

of the form δprνa`1ρ, ν
xm´1

2 ρsqbπ, so π1 – σ. If xm “ 2b`1, in the same way
we conclude that δprν´aρ, νbρsq¸σ contains an irreducible tempered subrep-
resentation τ of δprν´bρ, νbρsq ¸ σ1 such that µ˚pτq contains an irreducible
constituent of the form δprνa`1ρ, νbρsq ˆ δprνa`1ρ, νbρsq b π.

Let us now assume that 2b`1 R Jordρpσq, and let xM “ maxpr2a`1, 2b`
1s X Jordρpσqq. We denote by σ2 a unique discrete series subrepresentation

of δprν
xM`1

2 ρ, νbρsq ¸ σ. If xM ą 2a ` 1, then Lpδprν´
xM´1

2 ρ, νaρsq;σ2q is
contained in

δprν´aρ, ν
xM´1

2 ρsq ˆ δprν
xM`1

2 ρ, νbρsq ¸ σ,

so there is an irreducible subquotient π2 of δprν´aρ, ν
xM´1

2 ρsqˆδprν
xM`1

2 ρ, νbρsq

such that Lpδprν´
xM´1

2 ρ, νaρsq;σ2q is contained in π2 ¸ σ, and in the same
way as in the previously considered case we deduce that π2 – δprν´aρ, νbρsq.
If xM “ 2a`1, following the same lines we obtain that δprν´aρ, νbρsq¸σ con-
tains an irreducible tempered subrepresentation τ of δprν´aρ, νaρsq¸σ2 such
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that µ˚pτq contains an irreducible constituent of the form δprνa`1ρ, νbρsq b
π.

Lemma 3.3. Suppose that x P Jordρpσq, x is defined and we have εppx , ρq,

px, ρqq “ 1. Then the induced representation δprν
x `1

2 ρ, ν
x´1
2 ρsq ¸ σ has a

unique irreducible tempered subrepresentation.

Proof. From εppx , ρq, px, ρqq “ 1 follows that there is a discrete series σ1
such that σ is a subrepresentation of δprν´

x ´1
2 ρ, ν

x´1
2 ρsq ¸ σ1. By the clas-

sification of discrete series, δprν´
x ´1

2 ρ, ν
x´1
2 ρsq ¸ σ1 has two mutually non-

isomorphic discrete series subrepresentations, and we denote by σ1 a discrete
series subrepresentation non-isomorphic to σ. The induced representation
δprν´

x´1
2 ρ, ν

x´1
2 ρsq ¸ σ1 is a direct sum of two mutually non-isomorphic irre-

ducible tempered representations τ1 and τ2. In a similar way as in the proof
of Proposition 3.1 we deduce that δprν

x `1
2 ρ, ν

x´1
2 ρsq¸σ1 is irreducible, so for

i “ 1, 2 we have

τi ãÑ δprν´
x´1
2 ρ, ν

x´1
2 ρsq ¸ σ1 ãÑ δprν´

x ´1
2 ρ, ν

x´1
2 ρsq ˆ δprν´

x´1
2 ρ, ν´

x `1
2 ρsq ¸ σ1

– δprν´
x ´1

2 ρ, ν
x´1
2 ρsq ˆ δprν

x `1
2 ρ, ν

x´1
2 ρsq ¸ σ1

– δprν
x `1

2 ρ, ν
x´1
2 ρsq ˆ δprν´

x ´1
2 ρ, ν

x´1
2 ρsq ¸ σ1.

Consequently, for i “ 1, 2 there is an irreducible subquotient π1 of δprν´
x ´1

2 ρ,

ν
x´1
2 ρsq ¸ σ1 such that τi is a subrepresentation of δprν

x `1
2 ρ, ν

x´1
2 ρsq ¸ πi.

Frobenius reciprocity implies that µ˚pτiq contains an irreducible constituent

of the form δprν
x `1

2 ρ, ν
x´1
2 ρsq ˆ δprν

x `1
2 ρ, ν

x´1
2 ρsq b π, for i “ 1, 2. It follows

that µ˚pπiq contains an irreducible constituent of the form δprν
x `1

2 ρ, ν
x´1
2 ρsqb

π, for i “ 1, 2. From the classification of discrete series we conclude that
µ˚pδprν´

x ´1
2 ρ, ν

x´1
2 ρsq ¸ σ1q does not contain an irreducible constituent of

the form δprν
x `1

2 ρ, ν
x´1
2 ρsq ˆ δprν

x `1
2 ρ, ν

x´1
2 ρsq b π, and it contains exactly

two irreducible constituents of the form δprν
x `1

2 ρ, ν
x´1
2 ρsq b π, each of them

appearing with multiplicity one. Furthermore, both µ˚pσq and µ˚pσ1q con-

tain a unique irreducible constituent of the form δprν
x `1

2 ρ, ν
x´1
2 ρsqbπ. Thus,

tπ1, π2u “ tσ, σ
1u and there is a unique i P t1, 2u such that τi is a unique ir-

reducible tempered subrepresentation of δprν
x `1

2 ρ, ν
x´1
2 ρsq ¸ σ.

Lemma 3.4. Suppose that t2a ` 1, 2b ` 1u Ď Jordρpσq and there is an x P
Jordρpσq X x2a ` 1, 2b ` 1s such that x is defined and εppx , ρq, px, ρqq “ 1.
Then the induced representation δprν´aρ, νbρsq ¸ σ reduces.
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Proof. Let us denote by y the minimal element of Jordρpσq X x2a` 1, 2b` 1s
such that y is defined and εppy , ρq, py, ρqq “ 1. If y “ 2a ` 1, by the clas-
sification of discrete series there is an irreducible tempered representation τ
such that σ is a subrepresentation of δprνa`1ρ, ν

y´1
2 ρsq ¸ τ , and it can be

seen in the same way as in the proof of Lemma 3.2 that δprν´aρ, νbρsq ¸ σ

contains Lpδprν´bρ, ν
y´1
2 ρsq; τq if y ă 2b` 1, or an irreducible tempered sub-

representation τ 1 of δprν´bρ, νbρsq¸τ such that µ˚pτ 1q contains an irreducible
constituent of the form δprνa`1ρ, νbρsq ˆ δprνa`1ρ, νbρsq b π, if y “ 2b ` 1.
Let us assume that y ą 2a` 1. Then there is a discrete series σ1 such that
σ is a subrepresentation of δprν´

y ´1
2 ρ, ν

y´1
2 ρsq ¸ σ1. Thus,

σ ãÑ δprν´
y ´1

2 ρ, ν
y´1
2 ρsq ¸ σ1 ãÑ δprνa`1ρ, ν

y´1
2 ρsq ˆ δprν´

y ´1
2 ρ, νaρsq ¸ σ1,

so there is an irreducible subquotient π1 of δprν´
y ´1

2 ρ, νaρsq ¸ σ1 such that

σ is a subrepresentation of δprνa`1ρ, ν
y´1
2 ρsq ¸ π1. We claim that since y R

Jordρpσ1q, the induced representation δprν´
y ´1

2 ρ, νaρsq ¸ σ1 reduces.

If py q “ 2a`1, it follows from the proof of Lemma 3.2 that δprν´
y ´1

2 ρ, νaρsq¸
σ1 contains an irreducible tempered subquotient, and in the same way as in
the proof of Proposition 3.1 we obtain that Lpδprν´

y ´1
2 ρ, νaρsq;σ1q is its

unique irreducible non-tempered subquotient.
If py q ą 2a` 1, in the same way we conclude that δprν´

y ´1
2 ρ, νaρsq¸σ1

contains exactly two mutually non-isomorphic non-tempered subquotients.
Also, it does not contain an irreducible tempered subquotient, since such a
subquotient would be a subrepresentation of an induced representation of
the form δprν´aρ, νaρsq ¸ σds, for a discrete series σds, and the structural

formula implies that σds is contained in δprνa`1ρ, ν
y ´1

2 ρsq ¸ σ1. This gives
Jordρpσdsq “ Jordρpσ1q Y ty uzt2a ` 1u, so µ˚pσdsq contains an irreducible

constituent of the form δprνa`1ρ, ν
z´1
2 ρsq b π, for z P Jordρpσq such that

z “ 2a ` 1, but µ˚pδprνa`1ρ, ν
y ´1

2 ρsq ¸ σ1q does not contain an irreducible
constituent of such a form, since εpp2a`1, ρq, pz, ρqq “ ´1 by the minimality
of y.

It can be seen, using an easy Jacquet module calculation, that δprν´
y ´1

2 ρ, νaρsq¸
σ1 is a length two representation, so an irreducible subquotient non-isomorphic
to Lpδprν´

y ´1
2 ρ, νaρsq;σ1q is a subrepresentation of δprν´aρ, ν

y ´1
2 ρsq¸σ1, and

we denote it by π1.
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If π1 – π1, we have

σ ãÑ δprνa`1ρ, ν
y´1
2 ρsq ˆ δprν´aρ, ν

y ´1
2 ρsq ¸ σ1

ãÑ δprνa`1ρ, ν
y´1
2 ρsq ˆ δprνa`1ρ, ν

y ´1
2 ρsq ˆ δprν´aρ, νaρsq ¸ σ1

– δprνa`1ρ, ν
y ´1

2 ρsq ˆ δprνa`1ρ, ν
y´1
2 ρsq ˆ δprν´aρ, νaρsq ¸ σ1,

and εpppy q , ρq, py , ρqq “ 1, contradicting the minimality of y. It follows

that π1 – Lpδprν´
y ´1

2 ρ, νaρsq;σ1q.
Since the induced representation δprν´aρ, νaρsq ¸ σ1 is irreducible, using

the structural formula and definition of σ1 we conclude that

δprνa`1ρ, ν
y ´1

2 ρsq b δprν´aρ, νaρsq ¸ σ1

is a unique irreducible constituent of the form δprνa`1ρ, ν
y ´1

2 ρsqbπ appearing

in µ˚pδprν´
y ´1

2 ρ, νaρsq¸σ1q, and it obviously appears in µ˚pπ1q, so it does not

appear in µ˚pLpδprν´
y ´1

2 ρ, νaρsq;σ1qq. It can now be easily seen, using the

structural formula, that δprνa`1ρ, ν
y´1
2 ρsqb δprν´

y ´1
2 ρ, νaρsqbσ1 is a unique

irreducible constituent of the form δprνa`1ρ, ν
y´1
2 ρsqbδprν´

y ´1
2 ρ, νaρsqbπ ap-

pearing in the Jacquet module of δprνa`1ρ, ν
y´1
2 ρsq ¸Lpδprν´

y ´1
2 ρ, νaρsq;σ1q

with respect to the appropriate parabolic subgroup, and appears with mul-
tiplicity one. Also, it has to appear in the Jacquet module of σ with respect
to the appropriate parabolic subgroup.

Suppose that y ă 2b` 1. We have

Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ, νaρsq;σ1q ď

δprν´bρ, ν
y´1
2 ρsq ¸ Lpδprν´

y ´1
2 ρ, νaρsq;σ1q ď

δprν´aρ, νbρsq ˆ δprνa`1ρ, ν
y´1
2 ρsq ¸ Lpδprν´

y ´1
2 ρ, νaρsq;σ1q,

so there is an irreducible subquotient π2 of δprνa`1ρ, ν
y´1
2 ρsq ¸Lpδprν´

y ´1
2 ρ,

νaρsq;σ1q such that Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ, νaρsq;σ1q is contained in

δprν´aρ, νbρsq¸π2. Since the Jacquet module of Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ,

νaρsq;σ1q with respect to the appropriate parabolic subgroup contains

δprν´bρ, ν
y´1
2 ρsq b δprν´

y ´1
2 ρ, νaρsq b σ1,

it follows from the structural formula that the Jacquet module of π2 with
respect to the appropriate parabolic subgroup contains δprνa`1ρ, ν

y´1
2 ρsq b

δprν´
y ´1

2 ρ, νaρsq b σ1, so π2 – σ.
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It remains to discuss the case y “ 2b`1. Let us denote by τ a unique irre-
ducible tempered subrepresentation of δprν

y `1
2 ρ, νbρsq¸σ1, given by Lemma

3.3. Note that we have

Lpδprν´
y ´1

2 ρ, νaρsq; τq ãÑ δprν´
y ´1

2 ρ, νaρsq ˆ δprν´bρ, νbρsq ¸ σ1

– δprν´bρ, νbρsq ˆ δprν´
y ´1

2 ρ, νaρsq ¸ σ1,

and, by Lemma 2.2, there is an irreducible subquotient π3 of the represen-
tation δprν´

y ´1
2 ρ, νaρsq ¸ σ1 such that Lpδprν´

y ´1
2 ρ, νaρsq; τq is a subrepre-

sentation of δprν´bρ, νbρsq ¸ π3. Since µ˚pLpδprν´
y ´1

2 ρ, νaρsq; τqq contains

an irreducible constituent of the form δprν´
y ´1

2 ρ, νaρsq b π, it follows that

π3 – Lpδprν´
y ´1

2 ρ, νaρsq;σ1q. Thus,

Lpδprν´
y ´1

2 ρ, νaρsq; τq ãÑ δprν´bρ, νbρsq ¸ Lpδprν´
y ´1

2 ρ, νaρsq;σ1q

ď δprν´aρ, νbρsq ˆ δprνa`1ρ, νbρsq ¸ Lpδprν´
y ´1

2 ρ, νaρsq;σ1q,

and in the same way as in the previously considered case we obtain

Lpδprν´
y ´1

2 ρ, νaρsq; τq ď δprν´aρ, νbρsq ¸ σ.

Results obtained in this section lead to

Theorem 3.5. Suppose that 0 ď a ď b and for α such that ναρ ¸ σcusp
reduces we have a ´ α P Z. The induced representation δprν´aρ, νbρsq ¸ σ
is irreducible if and only if t2a ` 1, 2b ` 1u Ď Jordρpσq and for every x P
JordρpσqXx2a`1, 2b`1s such that x is defined we have εppx , ρq, px, ρqq “ ´1.

4 Case 1
2

Suppose that 1
2
ď b, b ´ 1

2
is a non-negative integer, and for α such that

ναρ¸σcusp reduces we have α´1
2
P Z. In this section we determine reducibility

for δprν
1
2ρ, νbρsq ¸ σ.

Proposition 4.1. Suppose that 2b`1 P Jordρpσq, εpminpJordρpσqq, ρq “ ´1,
and for x P JordρpσqXxminpJordρpσqq, 2b`1s such that x is defined we have

εppx , ρq, px, ρqq “ ´1. Then the induced representation δprν
1
2ρ, νbρsq ¸ σ is

irreducible.
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Proof. Note that µ˚pσq does not contain an irreducible constituent of the
form δprνxρ, νyρsq b π for x ď 1

2
and y P Jordρpσq X rminpJordρpσqq, 2b` 1s.

Now the proof follows same lines as in the one of Proposition 3.1.

The following result is used several times and might be of independent
interest.

Lemma 4.2. Let σ1 P Gn1 denote a discrete series and let us denote the
corresponding admissible triple by pJord1, σ1cusp, ε

1q. We denote the domain
of ε1 by D. Suppose that for ρ1 P RpGLq we have Jord1ρ1 ‰ H, 2c ` 1 “
minpJord1ρ1q is even, and ε1p2c ` 1, ρ1q “ 1. Let D1 “ Dzptp2c ` 1, ρ1qu Y
tpp2c`1, ρ1q, px, ρ1qq, ppx, ρ1q, p2c`1, ρ1qq : x P Jord1ρ, x ‰ 2c`1uq. Then σ1 is a

subrepresentation of δprν
1
2ρ, νcρsq¸σ2, for a discrete series σ2 corresponding

to the admissible triple pJord1 ztp2c` 1, ρ1qu, σ1cusp, ε
2q, where ε2 : D1 Ñ t˘1u

is defined by:

• ε2px, ρ1q “ ε1px, ρ1q for px, ρ1q P D
1 such that px , ρ1q ‰ p2c` 1, ρ1q,

• ε2ppx , ρ1q, px, ρ1qq “ ε1ppx , ρ1q, px, ρ1qq for ppx , ρ1q, px, ρ1qq P D
1,

• If Jord1ρ1 ‰ t2c ` 1u and xmin P Jord1ρ1 is such that pxminq “ 2c ` 1,
then ε2pxmin, ρ

1q “ ε1pp2c` 1, ρ1q, pxmin, ρ
1qq.

Proof. It can be easily verified that pJord1 ztp2c ` 1, ρ1qu, σ1cusp, ε
2q is an ad-

missible triple. From ε1p2c ` 1, ρ1q “ 1 follows that there is an irreducible

representation π1 such that σ1 is a subrepresentation of δprν
1
2ρ1, νcρ1sq ¸ π1.

Suppose that π1 is not a discrete series representation. Then there is an
embedding π1 ãÑ δprνy1ρ1, ν

y2ρ1sq ¸ π2, where y1 ` y2 ď 0, which leads to

σ1 ãÑ δprν
1
2ρ1, νcρ1sqˆδprνy1ρ1, ν

y2ρ1sq¸π2. If δprν
1
2ρ1, νcρ1sqˆδprνy1ρ1, ν

y2ρ1sq
is irreducible or py2, ρ1q “ p´

1
2
, ρ1q, this immediately contradicts the square-

integrability of σ1. If ρ1 – ρ1 and 1
2
ď y2 ă c, we have an embedding

σ1 ãÑ νy2ρ1 ˆ δprν
1
2ρ1, νcρ1sq ˆ δprνy1ρ1, νy2´1ρ1sq ¸ π2, which implies 2y2 ` 1 P

Jordρ1pσ
1q, a contradiction.

Thus, π1 is a discrete series representation and we denote the correspond-
ing admissible triple by pJordpπ1q, σ

2
cusp, επ1q. Obviously, Jordpπ1q “ Jordpσ2q

and σ2cusp – σ1cusp. To prove that π1 – σ2 we only consider the case Jordρ1 ‰
t2c ` 1u and show επ1pxmin, ρ

1q “ ε2pxmin, ρ
1q, other properties can be ob-

tained from the embedding σ1 ãÑ δprν
1
2ρ1, νcρ1sq ¸ π1 and definition of σ2, in

the same way as in [10, Section 8].
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If ε1pp2c` 1, ρ1q, pxmin, ρ
1qq “ 1, µ˚pσ1q contains an irreducible constituent

of the form δprν´cρ1, ν
xmin´1

2 ρ1sq b π. Using the structural formula we obtain

that µ˚pπ1q contains an irreducible constituent of the form δprν
1
2ρ1, ν

xmin´1

2 ρ1sqb
π, and from [10, Proposition 7.4] we get επ1pxmin, ρ

1q “ 1.
On the other hand, if επ1pxmin, ρ

1q “ 1 then π1 is a subrepresentation

of an induced representation of the form δprν
1
2ρ1, ν

xmin´1

2 ρ1sq ¸ π2, and σ1 is

a subrepresentation of δprν
1
2ρ1, ν

xmin´1

2 ρ1sq ˆ δprν
1
2ρ1, νcρ1sq ¸ π2. Now [10,

Proposition 7.1] implies ε1pp2c` 1, ρ1q, pxmin, ρ
1qq “ 1. Consequently, ε1pp2c`

1, ρ1q, pxmin, ρ
1qq “ ´1 implies επ1pxmin, ρ

1q “ ´1 and we have επ1pxmin, ρ
1q “

ε1pxmin, ρ
1q. Thus, π1 – σ2.

Lemma 4.3. Suppose that 2b`1 R Jordρpσq. Then the induced representation

δprν
1
2ρ, νbρsq ¸ σ reduces.

Proof. If Jordρpσq ‰ H and minpJordρpσqq ă 2b ` 1, the lemma follows in
the same way as Lemma 3.2. In other cases, the previous lemma can be
used to obtain a discrete series subrepresentation of δprν

1
2ρ, νbρsq ¸ σ, so

δprν
1
2ρ, νbρsq ¸ σ reduces.

Lemma 4.4. Suppose that εpminpJordρpσqq, ρq “ 1. Then the induced rep-

resentation δprν
1
2ρ, νbρsq ¸ σ reduces.

Proof. By the previous lemma, it is enough to consider the case 2b ` 1 P
Jordρpσq. Again we denote minpJordρpσqq by xmin. By Lemma 4.2, there is

a discrete series σ1 such that σ is a subrepresentation of δprν
1
2ρ, νxminρsq¸σ1.

Also, it follows from the structural formula that σ is a unique irreducible
subquotient of δprν

1
2ρ, νxminρsq¸σ1 which contains an irreducible constituent

of the form δprν
1
2ρ, νxminρsq b π in the Jacquet module with respect to the

appropriate parabolic subgroup.
If xmin ă b, in the same way as in the proof of Lemma 3.2 we obtain that

Lpδprν´bρ, ν
xmin´1

2 ρsq;σ1q is a subquotient of δprν
1
2ρ, νbρsq ¸ σ.

Suppose that xmin “ b, and denote by τ an irreducible tempered sub-
representation of δprν´bρ, νbρsq ¸ σ1 such that µ˚pτq contains δprν

1
2ρ, νbρsq ˆ

δprν
1
2ρ, νbρsqbσ1. Since τ is contained in δprν

1
2ρ, νbρsqˆδprν´bρ, ν´

1
2ρsq¸σ1,

there is an irreducible subquotient π1 of δprν´bρ, ν´
1
2ρsq ¸ σ1 such that τ is

contained in δprν
1
2ρ, νbρsq ¸ π1. By the definition of τ , µ˚pπ1q has to contain

δprν
1
2ρ, νxminρsq b σ1, so π1 – σ.
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Lemma 4.5. Suppose that 2b` 1 P Jordρpσq and εpminpJordρpσqq, ρq “ ´1.
If there is an x P Jordρpσq X xminpJordρpσqq, 2b ` 1s such that x is defined

and εppx , ρq, px, ρqq “ 1, then the induced representation δprν
1
2ρ, νbρsq ¸ σ

reduces.

Proof. Let us denote by y the minimal element of JordρpσqXxminpJordρpσqq, 2b`
1s such that y is defined and εppy , ρq, py, ρqq “ 1. Then there is a discrete

series σ1 such that σ is a subrepresentation of δprν´
y ´1

2 ρ, ν
y´1
2 ρsq ¸ σ1, and

an irreducible subquotient π1 of δprν
1
2ρ, ν

y ´1
2 ρsq ¸ σ1 such that σ is a sub-

representation of δprν
1
2ρ, ν

y´1
2 ρsq ¸ π1.

If π1 is tempered, since µ˚pδprν
1
2ρ, ν

y´1
2 ρsq¸π1q contains δprν´

y ´1
2 ρ, ν

y´1
2 ρsqb

σ1, it follows that µ˚pπ1q has to contain an irreducible constituent of the form

δprν
1
2ρ, ν

y ´1
2 ρsq b π. If y “ minpJordρpσqq, it follows that π1 is a subrep-

resentation of an induced representation of the form δprν
1
2ρ, ν

y ´1
2 ρsq ¸ π.

Otherwise, it follows that π1 is a subrepresentation of an induced represen-

tation of the form δprν´
py q ´1

2 ρ, ν
y ´1

2 ρsq ¸ π and, consequently, there is an

irreducible subquotient π1 of δprν´
py q ´1

2 ρ, ν
py q ´1

2 ρsq¸π such that π1 is a sub-

representation of δprν
py q `1

2 ρ, ν
y ´1

2 ρsq¸π1. In any case, using the embedding

σ ãÑ δprν
1
2ρ, ν

y´1
2 ρsq ¸ π1 we get a contradiction with the description of the

ε-function of σ. Consequently, π1 is non-tempered.
If y “ minpJordρpσqq, in the same way as in the proof of Proposition

3.1 we obtain that Lpδprν´
y ´1

2 ρ, ν´
1
2ρsq;σ1q is a unique irreducible non-

tempered subquotient of δprν
1
2ρ, ν

y ´1
2 ρsq ¸ σ1. If y ą minpJordρpσqq, in

the same way as in the previous section we conclude that an irreducible
non-tempered subquotient of δprν

1
2ρ, ν

y ´1
2 ρsq ¸ σ1 is either isomorphic to

Lpδprν´
y ´1

2 ρ, ν´
1
2ρsq;σ1q or to Lpδprν´

py q ´1
2 ρ, ν´

1
2ρsq;σ2q, where σ2 is a unique

discrete series subrepresentation of δprν
py q `1

2 ρ, ν
y ´1

2 ρsq ¸ σ1. If

π1 – Lpδprν´
py q ´1

2 ρ, ν´
1
2ρsq;σ2q,

we get that σ is a subrepresentation of an induced representation of the form

δprν
py q `1

2 ρ, ν
y ´1

2 ρsq ¸ π, which contradicts the minimality of y.

Thus, π1 – Lpδprν´
y ´1

2 ρ, ν´
1
2ρsq;σ1q and the rest of the proof follows in

the same way as in the proof of Lemma 3.4.

Let us now summarize the results of this section.
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Theorem 4.6. Suppose that 1
2
ď b, b ´ 1

2
is a non-negative integer, and

for α such that ναρ ¸ σcusp reduces we have α ´ 1
2
P Z. The induced rep-

resentation δprν
1
2ρ, νbρsq ¸ σ is irreducible if and only if 2b ` 1 P Jordρpσq,

εpminpJordρpσqq, ρq “ ´1, and for every x P JordρpσqXrminpJordρpσqq, 2b`1s
such that x is defined we have εppx , ρq, px, ρqq “ ´1.

5 The remaining case

In this section we determine reducibility for δprνaρ, νbρsq¸σ, where 1 ď a ď b
and for α such that ναρ¸ σcusp reduces we have a´ α P Z.

The following result can be proved in the same way as Proposition 3.1.

Proposition 5.1. Suppose that one of the following holds:

1. r2a´ 1, 2b` 1s X Jordρpσq “ H,

2. 2b` 1 P Jordρpσq and for every x P r2a` 1, 2b` 1sXJordρpσq such that
x is defined and x ě 2a´ 1 we have εppx , ρq, px, ρqq “ ´1.

Then the induced representation δprνaρ, νbρsq ¸ σ is irreducible.

Lemma 5.2. Suppose that 2b`1 R Jordρpσq and r2a´1, 2b`1yXJordρpσq ‰
H. Then the induced representation δprνaρ, νbρsq ¸ σ reduces.

Proof. Let us write x “ maxpr2a´1, 2b`1yXJordρpσqq. Following the same
lines as in the proof of Lemma 3.2, we deduce that δprνaρ, νbρsq¸σ contains

Lpδprν´
x´1
2 ρ, ν´aρsq;σ1q, where σ1 is a unique discrete series subrepresenta-

tion of δprν
x`1
2 ρ, νbρsq ¸ σ.

Lemma 5.3. Suppose that 2b ` 1 P Jordρpσq and there is an x P r2a `
1, 2b ` 1s X Jordρpσq such that x is defined, x ě 2a ´ 1, and we have
εppx , ρq, px, ρqq “ 1. Then the induced representation δprνaρ, νbρsq ¸ σ re-
duces.

Proof. If εppp2b` 1q , ρq, p2b` 1, ρqq “ 1, in the same way as in the proof of

Lemma 3.2 we obtain that δprνaρ, νbρsq¸σ contains Lpδprν
p2b`1q ´1

2 ρ, ν´aρsq; τq,

where τ is an irreducible tempered subrepresentation of δprν
p2b`1q `1

2 ρ, νbρsq¸
σ given by Lemma 3.3.
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Let us now assume that εppp2b ` 1q , ρq, p2b ` 1, ρqq “ ´1, and let y “
maxtx P r2a ` 1, 2b ` 1s X Jordρpσq : x ě 2a ´ 1, εppx , ρq, px, ρqq “ 1u.
Then there is a discrete series σ1 such that σ is a subrepresentation of
δprν´

y ´1
2 ρ, ν

y´1
2 ρsq ¸ σ1. Let us now discuss the case y ą 2a´ 1.

We show that δprνaρ, νbρsq ¸ σ contains

Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ, ν´aρsq;σ1q.

Since δprν´bρ, ν
y´1
2 ρsq ˆ δprν´

y ´1
2 ρ, ν´aρsq is irreducible, it follows at once

that Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ, ν´aρsq;σ1q is a subquotient of

δprνaρ, ν
y ´1

2 ρsq ¸ Lpδprν´bρ, ν
y´1
2 ρsq;σ1q,

and the Jacquet module of Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ, ν´aρsq;σ1q with re-

spect to the appropriate parabolic subgroup contains

δprν´
y ´1

2 ρ, ν´aρsq b δprν´bρ, ν
y´1
2 ρsq b σ1. (1)

Note that Lpδprν´bρ, ν
y´1
2 ρsq;σ1q is a subquotient of

δprν
y `1

2 ρ, νbρsq ˆ δprν´
y ´1

2 ρ, ν
y´1
2 ρsq ¸ σ1. (2)

Since µ˚pLpδprν´bρ, ν
y´1
2 ρsq;σ1qq ě δprν´bρ, ν

y´1
2 ρsq b σ1, using the struc-

tural formula and classification of discrete series we deduce that there is
a discrete series subrepresentation σds of δprν´

y ´1
2 ρ, ν

y´1
2 ρsq ¸ σ1 such that

Lpδprν´bρ, ν
y´1
2 ρsq;σ1q is a subquotient of δprν

y `1
2 ρ, νbρsq ¸ σds. Also, it

is easy to see that δprν´bρ, ν
y´1
2 ρsq b σ1 appears with multiplicity one in

µ˚pδprν
y `1

2 ρ, νbρsq ¸ σdsq, so Lpδprν´bρ, ν
y´1
2 ρsq;σ1q appears at most once in

the composition series of δprν
y `1

2 ρ, νbρsq ¸ σds.

Let us prove that Lpδprν´bρ, ν
y´1
2 ρsq;σ1q appears at least twice in the

composition series of the induced representation (2).
In RpGq we have

δprν
y `1

2 ρ, νbρsq ˆ δprν´
y ´1

2 ρ, ν
y´1
2 ρsq ¸ σ1 “

δprν´
y ´1

2 ρ, νbρsq ˆ δprν
y `1

2 ρ, ν
y´1
2 ρsq ¸ σ1`

Lpδprν´
y ´1

2 ρ, ν
y´1
2 ρsq, δprν

y `1
2 ρ, νbρsqq ¸ σ1.
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From

Lpδprν´bρ, ν
y´1
2 ρsq;σ1q ď δprν´bρ, ν

y ´1
2 ρsq ˆ δprν

y `1
2 ρ, ν

y´1
2 ρsq ¸ σ1,

we conclude that Lpδprν´bρ, ν
y´1
2 ρsq;σ1q appears in δprν´

y ´1
2 ρ, νbρsqˆδprν

y `1
2 ρ,

ν
y´1
2 ρsq ¸ σ1.
On the other hand, by Proposition 5.1 we have

Lpδprν´bρ, ν
y´1
2 ρsq;σ1q ãÑ δprν´

y ´1
2 ρ, ν

y´1
2 ρsq ˆ δprν´bρ, ν´

y `1
2 ρsq ¸ σ1

– δprν´
y ´1

2 ρ, ν
y´1
2 ρsq ˆ δprν

y `1
2 ρ, νbρsq ¸ σ1,

so there is an irreducible representation

π1 P tLpδprν
´

y ´1
2 ρ, ν

y´1
2 ρsq, δprν

y `1
2 ρ, νbρsqq, δprν´

y ´1
2 ρ, νbρsqˆδprν

y `1
2 ρ, ν

y´1
2 ρsqu

such that Lpδprν´bρ, ν
y´1
2 ρsq;σ1q is a subrepresentation of π1 ¸ σ1. Suppose

that π1 – δprν´
y ´1

2 ρ, νbρsqˆ δprν
y `1

2 ρ, ν
y´1
2 ρsq. Using Proposition 5.1 again,

we have

Lpδprν´bρ, ν
y´1
2 ρsq;σ1q ãÑ δprν´

y ´1
2 ρ, νbρsq ˆ δprν

y `1
2 ρ, ν

y´1
2 ρsq ¸ σ1

– δprν´
y ´1

2 ρ, νbρsq ˆ δprν´
y´1
2 ρ, ν´

y `1
2 ρsq ¸ σ1,

so there is an irreducible representation

π2 P tLpδprν
´

y´1
2 ρ, ν´

y `1
2 ρsq, δprν´

y ´1
2 ρ, νbρsqq, δprν´

y´1
2 ρ, νbρsqu

such that Lpδprν´bρ, ν
y´1
2 ρsq;σ1q is a subrepresentation of π2 ¸ σ1. If

π2 – Lpδprν´
y´1
2 ρ, ν´

y `1
2 ρsq, δprν´

y ´1
2 ρ, νbρsqq,

we get that µ˚pLpδprν´bρ, ν
y´1
2 ρsq;σ1qq contains an irreducible constituent of

the form δprν´
y´1
2 ρ, ν´

y `1
2 ρsqbπ, which is impossible since Lpδprν´bρ, ν

y´1
2 ρsq;σ1q

is a subquotient of δprν´
y´1
2 ρ, νbρsq¸σ1. On the other hand, Theorem 3.5 im-

plies that δprν´
y´1
2 ρ, νbρsq¸σ1 reduces, so it can not contain Lpδprν´bρ, ν

y´1
2 ρsq;σ1q

as a subrepresentation. This gives π2 fl δprν´
y´1
2 ρ, νbρsq.

Thus, π1 – Lpδprν´
y ´1

2 ρ, ν
y´1
2 ρsq, δprν

y `1
2 ρ, νbρsqq, so Lpδprν´bρ, ν

y´1
2 ρsq;σ1q

also appears in Lpδprν´
y ´1

2 ρ, ν
y´1
2 ρsq, δprν

y `1
2 ρ, νbρsqq ¸ σ1.
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Consequently, Lpδprν´bρ, ν
y´1
2 ρsq;σ1q is a subquotient of δprν

y `1
2 ρ, νbρsq¸

σ, so Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ, ν´aρsq;σ1q is a subquotient of

δprνaρ, ν
y ´1

2 ρsq ˆ δprν
y `1

2 ρ, νbρsq ¸ σ,

and there is an irreducible representation

π3 P tLpδprν
aρ, ν

y ´1
2 ρsq, δprν

y `1
2 ρ, νbρsqq, δprνaρ, νbρsqu

such that Lpδprν´bρ, ν
y´1
2 ρsq, δprν´

y ´1
2 ρ, ν´aρsq;σ1q is a subquotient of π3¸σ.

Now (1) implies π3 – δprνaρ, νbρsq.
If y “ 2a ´ 1, it can be proved in the same way that δprνaρ, νbρsq ¸ σ

contains Lpδprν´bρ, ν
y´1
2 ρsq;σ1q, details being left to the reader.

This leads to

Theorem 5.4. Suppose that 1 ď a ď b and for α such that ναρ ¸ σcusp
reduces we have a ´ α P Z. The induced representation δprνaρ, νbρsq ¸ σ is
irreducible if and only if one of the following holds:

1. r2a´ 1, 2b` 1s X Jordρpσq “ H,

2. 2b` 1 P Jordρpσq and for every x P r2a` 1, 2b` 1sXJordρpσq such that
x is defined and x ě 2a´ 1 we have εppx , ρq, px, ρqq “ ´1.
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Soc., 4 (2002), pp. 143–200.
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