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Abstract

We present an algebraic proof of the irreducibility criteria for the
generalized principal series of unitary groups over a non-archimedean
local field.

1 Introduction

The aim of this paper is to provide a uniform and simple irreducibility criteria
for the induced representations of the form 0 x o, where ¢ stands for an
irreducible essentially square-integrable representation of the general linear
group and o stands for a discrete series representation of the unitary group
over a non-archimedean local field. Induced representations of such a form
are called the generalized principal series, and play an important role in the
representation theory of reductive p-adic groups.

We note that reducibility of the generalized principal series of symplectic
and odd orthogonal groups has been described in [8], in terms of the Mceglin-
Tadi¢ classification, using an approach mostly based on the intertwining op-
erators method. On the other hand, we use purely algebraic methods and all
our proofs are also valid in the symplectic and odd orthogonal group case,
so the results of this paper can also be regarded as a shorter and algebraic
version of [8].

The main strategy follows the one initiated in [8] and [4]: to prove the
observed representation is irreducible we show that every irreducible subquo-
tient is isomorphic to its Langlands quotient, and to prove the reducibility we
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construct an irreducible subquotient non-isomorphic to the Langlands quo-
tient. Our approach is based on the calculation of the Jacquet modules of
induced representations, and uses embeddings of discrete series provided in
Sections 7 and 8 of [10]. An advantage of this approach is that one could ex-
pect to extend our results to the case of odd GSpin and metaplectic groups,
as soon as one extends the discrete series classification there.

In the following section we present some preliminaries, and in the next
three sections we provide a description of the reducibility for the generalized
principal series, using a case-by-case consideration.

2 Preliminaries

Let F' denote a non-archimedean local field and let F” a separable quadratic
extension of F. Let us denote by € the non-trivial F-automorphism of F”.
We fix an anisotropic unitary space Yy over F’ and consider the Witt tower
of unitary spaces V,, based on Yj.

If dimp(Yp) is odd, for each 2n + 1 > dimg (Yp) there is a unique space
V,, in the Witt tower of dimension 2n + 1, and we denote the unitary group
of this space by G,.

If dimp (Yp) is even, for each 2n > dimpg(Yy) there is a unique space V,,
in the Witt tower of dimension 2n, and we denote the unitary group of this
space by G,,.

We fix a minimal parabolic subgroup in G,, and consider standard parabolic
subgroups with respect to this minimal parabolic subgroup. The Levi fac-
tors are naturally isomorphic to GL(ny, F') x -+ x GL(ng, F') x G/, where
GL(m, F") denotes the general linear group of rank m over F’. If §; is a
representation of GL(n;, F'), for i = 1,2,... k, 7 a representation of G,,,
and M =~ GL(ny, F') x -+ x GL(ng, F') x G,y we denote by d; X « -+ X 0 X T
the normalized parabolically induced representation Ind§7 (6, ® - - ® 6, ® 7).
We use a similar notation to denote a parabolically induced representation
of GL(m, F").

By Irr(G,,) we denote the set of all irreducible admissible representations
of G,. Let R(G,) denote the Grothendieck group of admissible representa-
tions of finite length of G,, and define R(G) = @,50R(Gy). In a similar way
we define Irr(GL(n, F')) and R(GL) = ®,>0R(GL(n, F")).

For o € Irr(G,,) and 1 < k < n/, where n’ denotes the Witt index of V,,,
we denote by r(;)(c) the normalized Jacquet module of o with respect to the



parabolic subgroup having the Levi subgroup isomorphic to GL(k, F')x G,,_.
We identify 7 (o) with its semisimplification in R(GL(k, F'))@R(G,—k) and
consider

p o) =100+ Z rwy(0) € R(GL) ® R(G).
k=1

We denote by v a composition of the determinant mapping with the nor-
malized absolute value on F’. Let p € R(GL) denote an irreducible cusp-
idal representation. By a segment we mean a set of the form [p,v™p] :=
{p,vp,...,v™p}, for a non-negative integer m. The induced representation
p xvpx---xv"p has a unique irreducible subrepresentation, denoted by
d([p, v™p]), which is essentially square-integrable.

For an irreducible smooth representation m € R(GL), let 7 denote the
representation g — 7(60(g)), where 7 stands for the contragredient represen-
tation of m. The representation 7 is called F’/F-selfdual if m =~ 7.

Note that, by the Moeeglin-Tadi¢ classification, if a twist by a character
of the form v*, with x € R, of some irreducible unitarizable cuspidal rep-
resentation p € R(GL) appears in the cuspidal support of a discrete series
o € R(G), then p is an F’/F-selfdual representation.

Let us recall the structural formula ([9] and [7, Section 15]).

Lemma 2.1. Let p € R(GL) be an irreducible cuspidal representation and
k,l € R such that k +1 € Z=o. Let 0 € R(G) be an irreducible admissible
representation. Write p*(o) = >, 7 ®o0’. Then the following holds:

WG ool mo) = D) 3 S x ([ )

i=—k—1j=im0o!

® o([vtp,vip]) x o',
We omit o([v*p, v¥p]) if x > y.

We use the subrepresentation version of the Langlands classification, and
realize a non-tempered irreducible representation 7w of G, as the unique ir-
reducible (Langlands) subrepresentation of an induced representation of the
form 07 X 0y X - -+ X 0 ¥ 7, where 7 is an irreducible tempered representation
of some Gy, and §1,d,...,0;, € R(GL) are irreducible essentially square-
integrable representations such that e(d;) < e(dy) < -+ < e(dg) < 0, where
e(6;) is such that v=¢%)§; is unitarizable. We write 7 = L(8y, 8o, ..., 0%; 7).
We also use a similar classification for the general linear groups.
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The following result ([3, Lemma 5.5]), whose proof carries directly to the
unitary group case, is used several times in the paper.

Lemma 2.2. Suppose that m € R(G,,) is an irreducible representation, A an
wrreducible representation of the Levi subgroup M of G, and 7 is a subrep-
resentation of [nd]\Gf()\). If L > M, then there is an irreducible subquotient
p of Ind%,(\) such that  is a subrepresentation of Inds™(p).

By the classification of discrete series ([5, 7]), which holds unconditionally
due to [1], [6, Théoreme 3.1.1] and [2, Theorem 7.8], a discrete series o €
G, corresponds to an admissible triple which consists of the Jordan block,
the partial cuspidal support, and the e-function. For more details on these
invariants we refer the reader to [7] and [8].

Through the paper we fix a discrete series o, and we denote the corre-
sponding admissible triple by (Jord, usp, €). For an irreducible F”/F-selfdual
cuspidal representation p; of GL(ny, F') we write Jord,, = {z : (z,p1) €
Jord}. If Jord,, # & and x € Jord,,, denote x_ = max{y € Jord,, : y < x},
if it exists. Domain of the e-function is a subset of Jord u(Jord x Jord), and
to define the e-function on the elements of Jord x Jord, it is enough to define
the e-function on the elements of the form ((z_, p1), (x, p1)).

We fix an irreducible cuspidal representation p € R(GL), and deter-
mine the reducibility criterion for the induced representation of the form
S([*p,vpl) xo, y—x € Z and z+y = 0, called the generalized principal se-
ries. We emphasize that in R(G) holds d([v*p, v¥p])xo = 6([vYp, v "p]) x0o.
Reducibility in the case x = —y is an integral part of the discrete series clas-
sification, so we assume that = +y > 0. Also, it is rather well-know, and can
be easily checked following the same lines as in the proof of Proposition 3.1,
that o([v"p, vYp]) x o is irreducible if p is not F’/F-selfdual or if p is F'/F-
selfdual but for o such that v“p x 0.y, reduces we have x — o ¢ Z. Thus,
through the paper we can also assume that p is F’/F-selfdual and x — o € Z.

3 Non-positive case

Suppose that 0 < a < b and for a such that v*p x 0., reduces we have
a — a € Z. In this section we determine reducibility for d([v=%p, %p]) x &.

First we note that if [2a+ 1,20+ 1] n Jord,(c) = &, by the classification
of discrete series the induced representation §([v~%p,%p]) x o contains two
discrete series subrepresentations, so it reduces.
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Proposition 3.1. Suppose that {2a + 1,2b + 1} < Jord,(o) and for every
x € Jord,(0)n(2a+1,2b+1] such that x_ is defined we have €((x_, p), (z, p)) =
—1. Then the induced representation §([v=p,v’p|) x o is irreducible.

Proof. Let us first show that there are no irreducible tempered subquotients.
By the classification of discrete series, part of the cuspidal support of o
consisting of elements of the form v*p, x € R, can be written as

(e v o) U 0, v 0D,

where all k,1, ¢;,d; are non-negative, ¢; # d; for all ¢,7, ¢; # ¢; for ¢ # 7,
dj > dj4q for j =1,...,0—1, ¢ >a—1lforali anda—-1+1>0.
Then we have Jord,(c) = {2¢; +1 : i = 1,...,2k} v {2d; +1 : j =
L...,0u{2(a—m)—1:meZl<m,a—m=1}. From2a+1,2b+1¢
Jord, (o) we obtain that d([v=%p, v’p]) x o does not have discrete series sub-
quotients. Using similar cuspidal support considerations, we deduce that an
irreducible tempered subquotient of §([v=%p,1°p]) x o is a subrepresenta-
tion of §([v~p,Pp]) x , for an irreducible representation . This implies
w*(6([v=2p, vbp]) x o) = 6([v="p,"p]) @7, and using the structural formula
and the square-integrability of o we deduce that ;*(o) contains an irreducible
constituent of the form §([v*™p, v?p])@7’. From [10, Proposition 7.2] follows
e(((2b0+1)-,p), (2b+ 1,p)) = 1, a contradiction.

Now we determine the non-tempered irreducible subquotients. Every such
irreducible subquotient is of the form L(0([v™ p1, V¥ p1]), . . ., S([V*™ Py VY™ pia]);
7) where x; + y; < 0 for ¢ = 1,...,m, and z; + y; < %41 + Y41 for
i =1,...,m—1. Since L(5([v" p1, V" p1]), ..., 0([V"™ pm, V¥ pm]); T) 18 a
subrepresentation of

S([v™ pr, v pr]) % L(S([v™2 p2, v¥2p2]), - . ., S ([ poms VY™ pi] )5 T),

it follows that p*(6([v=%p,v"p]) x o) contains

o([* pr, v p1]) @ L(6([v*2 p2, v pal)s - .. 6 ([ s V9 pia]); 7).

We directly obtain p; = p, —b < 7 and a < y;. If a < yy, it follows that p*(o)
contains an irreducible constituent of the form §([v**!p, v%p|) @7, for x < b,
contradicting [10, Proposition 7.2]. Thus, L(5([v™2pa, v¥2pa]), ..., 0([V"™ pm,
v¥m p,]); T) is contained in 0([r"1 p, 1Pp]) x 0. If m > 2, in the same way
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we conclude that y, = z1, which leads to x5 + yo < 21 + 1, a contradiction.
Thus, m = 1 and 6([v="'"!p,1%p]) x o contains an irreducible tempered
subquotient. In the same way as in the first part of the proof we deduce
that this is possible only if z; = —b. Thus, L(5([v~%p,v%p]); o) is a unique
irreducible subquotient of &([~%p,%p]) x o, and it is well-known that it
appears with multiplicity one. Thus, 6([v~%p, v°p]) x ¢ is irreducible. O]

Lemma 3.2. Suppose that [2a +1,2b+ 1] n Jord,(0) # &, but {2a+1,2b +
1} & Jord, (o). Then the induced representation &([v="p,v’p]) x o reduces.

Proof. Note that L(6([v="p, v%p]); @) is contained in 6([v=%p, v*p]) xo. Let us
first assume that 2a+1 ¢ Jord, (o). Let z,,, = min([2a+1,2b+1]nJord,(o)).
It is easy to see, using [10, Theorem 8.2], that there is a discrete series o such
that o is a unique irreducible subrepresentation of &([v2p, v pl) x oy.
Furthermore, o is a unique irreducible subquotient of §([v**1p, e p]) X 01
which contains an irreducible constituent of the form &([v*™p, v e pl)®m
in the Jacquet module with respect to the appropriate parabolic subgroup.

—1

If ., # 2b + 1, note that L(5([v=p,v™" p]); 01) is contained in

5([v ™o, v p) < 8([v" p, v ™ pl)oy = 8([v ™ p, v p]) x8([v"p,

a+1

Tm—1

vz p])>40‘1,

so there is an irreducible subquotient m; of §([v*p, v p]) x o1 such that
L(6([v=tp,v™™ p]); o) is contained in §([r~p, 1Pp]) x 1.

Obviously, p* (L(8([v=p, v p]); o1)) contains an irreducible constituent
of the form 8([v*p, v™ p])@m, so m = 0. If 2, = 2b+ 1, in the same way
we conclude that §([v=%p, ¥p]) x o contains an irreducible tempered subrep-
resentation 7 of 6([vp,v°p]) x o1 such that p*(7) contains an irreducible
constituent of the form §([v*™p, v%p]) x §([v2p, vbp]) @ .

Let us now assume that 2b+1 ¢ Jord, (o), and let z); = max([2a+1,2b+
1] n Jord,(0)). We denote by o, a unique discrete series subrepresentation
of §([v xM2+1,0,1/ pl) x o. If zpy > 2a + 1, then L(5([V‘xw]271p, vpl); o0) is
contained in

6o, v ™5 p)) x 8([v ™5 p, "]
so there is anlrredumble subquotient 7o of 6 ([~ %p, v = ])xé([ B p 1))

such that L(§([v S p,v*pl); o2) is contained in my x o, and in the same
way as in the previously considered case we deduce that m = §([r~%p, v%p]).
If 2 = 2a+ 1, following the same lines we obtain that 6([v~%p, v°p]) x o con-

tains an irreducible tempered subrepresentation 7 of d([v~%p, v*p]) % o9 such
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that p*(7) contains an irreducible constituent of the form §([v2™p, vbp]) ®
. [

Lemma 3.3. Suppose that x € Jord,(o), x_ is defined and we have €((x_, p),

(z,p)) = 1. Then the induced representation 6([v*2 p, vz p]) x o has a
unique 1rreducible tempered subrepresentation.

Proof. From €((z_,p), (x,p)) = 1 follows that there is a discrete series oy
such that o is a subrepresentation of 8([v~"2 p,v"7 p]) x 1. By the clas-
sification of discrete series, §([v~"2 p, v"2 p]) % o1 has two mutually non-
isomorphic discrete series subrepresentations, and we denote by ¢’ a discrete
series subrepresentation non-isomorphic to o. The induced representation
5([v="2 p,v"% p]) x oy is a direct sum of two mutually non-isomorphic irre-
ducible tempered representations 71 and 75. In a similar way as in the proof
of Proposition 3.1 we deduce that § ([VZTH p, VT p]) »x oy is irreducible, so for
1= 1,2 we have

T, > (5([1/ngp, V%p]) X o] — 5([y_%p, V%p]> X 5([y_1771p, V_L;Ip]) X
~ 3([v="F p,v T pl) X O([vF v p)) 1o
~ §([v" p,v"7 pl) x O([v = p,v"E pl) 2o

Consequently, for i = 1,2 there is an irreducible subquotient 7y of § ([l/_%p,

v*z p]) x oy such that 7; is a subrepresentation of 8([v"2 p, vz p]) x ;.
Frobenius reciprocity implies that p*(7;) contains an irreducible constituent
of the form 0([v"2 p, "7 p]) x 8([v™ 2 p, "% p]) @, for i = 1,2. It follows
that 1*(7;) contains an irreducible constituent of the form §([v™2" p, v*7 p])®
7, for © = 1,2. From the classification of discrete series we conclude that
w*(6([v="2" p, v= p]) x 01) does not contain an irreducible constituent of
the form 8([v*2 p, "7 p]) x 8([v*2 p, "7 p]) ® 7, and it contains exactly
two irreducible constituents of the form d([v"2 p, "7 p]) @ 7, each of them
appearing with multiplicity one. Furthermore, both p*(o) and p*(o’) con-

tain a unique irreducible constituent of the form ([VQCTJr1 P, VT p])®7. Thus,
m, e} = {0, 0’} and there is a unique 7 € {1, 2} such that 7; is a unique ir-
{m,m} = {o, q q

reducible tempered subrepresentation of ¢ ([VLTHp, v pl) x o. O]

Lemma 3.4. Suppose that {2a + 1,2b + 1} < Jord,(0) and there is an x €
Jord,(c) N (2a + 1,2b + 1] such that x_ is defined and e((z_, p), (x,p)) = 1.
Then the induced representation §([v=p,v°p|) x o reduces.

7
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Proof. Let us denote by y the minimal element of Jord,(0) n{(2a +1,2b + 1]
such that y_ is defined and €((y-, p), (y,p)) = 1. If y_ = 2a + 1, by the clas-
sification of discrete series there is an irreducible tempered representation 7
such that o is a subrepresentation of &([v**1p, V%p]> x 7, and it can be
seen in the same way as in the proof of Lemma 3.2 that §([v=%p,%p]) x o
contains L(([v°p, u%p]); 7)if y < 20+ 1, or an irreducible tempered sub-
representation 7/ of ([ °p, 1°p]) x 7 such that p*(7’) contains an irreducible
constituent of the form ([ p, vbp]) x o([v* ip, vPp]) @ 7, if y = 2b + 1.
Let us assume that y_ > 2a 4+ 1. Then there is a discrete series o7 such that
o is a subrepresentation of §([v="2 p,v"7 p]) x 1. Thus,

y-—1 y—1

oc—0(vT 7 pv> T

pl) % oy = 8([v*p, T pl) x 8([v T p,vp]) % o,

so there is an irreducible subquotient m; of 5([1/_%771,0, v?pl) x o1 such that
o is a subrepresentation of §([v*™p, =s p]) x . We claim that since y_ ¢
Jord,(oq), the induced representation § ([V_%p, vpl) x o1 reduces.

If (y-)- = 2a+1, it follows from the proof of Lemma 3.2 that 5([V*y’Tflp, vp])x
o1 contains an irreducible tempered subquotient, and in the same way as in
the proof of Proposition 3.1 we obtain that L(5([1/_y7771p, vpl);o1) is its
unique irreducible non-tempered subquotient.

If (y-)- > 2a+ 1, in the same way we conclude that (5([V*y’T_1p, vpl) x oy
contains exactly two mutually non-isomorphic non-tempered subquotients.
Also, it does not contain an irreducible tempered subquotient, since such a
subquotient would be a subrepresentation of an induced representation of
the form §([v~%p,vp]) x o045, for a discrete series o4s, and the structural
formula implies that o4 is contained in §([v*™p, v p]) x 1. This gives
Jord,(o4s) = Jord,(o1) U {y_}\{2a + 1}, so p*(o4s) contains an irreducible
constituent of the form §([vp, "7 p]) @ m, for z € Jord, (o) such that
z_=2a+ 1, but p*(6([v*p, V%p]) x 1) does not contain an irreducible
constituent of such a form, since €((2a + 1, p), (2, p)) = —1 by the minimality
of y.

It can be seen, using an easy Jacquet module calculation, that (5([U‘yé;1 p, v*p]) %
o1 is a length two representation, so an irreducible subquotient non-isomorphic
to L(é([v_%p, v°p)); 1) is a subrepresentation of § ([v=%p, "% p]) x 01, and
we denote it by 7’



If m =~ 7/, we have

o §([ T, v T pl) x O([v 0 p, v T p]) % oy
— 5([V““p7 = p]) x 8([v" o, " T p]) % ([v ", 1)) % 0

) x 6
) x 0
zaanmVQppxa[ﬁww%%pxamr%wwnxah
1
]

X

and €(((y-)-, p), (v, p)) , contradicting the minimality of y. It follows
that m =~ L(6([v % );01).

Since the induced representation §([v~%p, v*p|) x oy is irreducible, using
the structural formula and definition of o; we conclude that

([ p, v p]) @ 6([vp, v7p]) 1 o

“+1p "5 p|)@ appearing

in u*(é([u*y’T_lp, v®pl) xo1), and it obviously appears in p*(7'), so it does not
appear in u*(L(é([u‘zjé;lp, v°pl);o1)). It can now be easily seen, using the
structural formula, that d([v*1p, 1"z p]) @ 8([v="F p,vp]) ® 07 is a unique
irreducible constituent of the form §([v*™p, V' p)@6([v= "= o “p])®m ap-
pearing in the Jacquet module of ([ p, VyTﬂp]) x L(0([v —i5

is a unique irreducible constituent of the form §([v

= p,vp]);01)
with respect to the appropriate parabolic subgroup, and appears with mul-

tiplicity one. Also, it has to appear in the Jacquet module of o with respect
to the appropriate parabolic subgroup.
Suppose that y < 2b + 1. We have

L[ p, "7 p)). 8([v "% p,v%p)); 1) <
3([v b, p]) % L(O([v~ " p,v%p)); 01) <
([ p,v"p]) x 8([V* L p, " T p]) % L(S([v™"F p,v°pl);on),

so there is an irreducible subquotient m, of §([v*1p, "= p]) x L(8([v="= p,
vep]); 1) such that L(5([V_bP,VyTAP]),5([V_y5;1p, vpl); o1) is contained in

—1

§([v=p, v"p]) xmy. Since the Jacquet module of L(5([v=p, v 21,0]) S([v="= p,
v®pl); 1) with respect to the appropriate parabolic subgroup contains

(v lp. v pl) @[V F p.v ) @0,

it follows from the structural formula that the Jacquet module of T with
respect to the appropriate parabolic subgroup contains §([v*"p, v"7 p]) ®

(5([1/_%7_1@ vpl) ® o1, so Ty = 0.




It remains to discuss the case y = 20+ 1. I:gt us denote by 7 a unique irre-
ducible tempered subrepresentation of & ([I/UT p, V°p]) x oy, given by Lemma
3.3. Note that we have

L[ pvp]);7) = 6([v™"% p,vp]) x 6([v"p, v1p]) 3 on
=~ 6([v="p,v"p]) x 6([v™F p,v7p]) % 0,
and, by Lemm? 2.2, there is an irreducible subqulotient 73 of the represen-
tation §([v~" 2 p,v%]) x oy such that L(§([v~"= p,v%]);7) is a subrepre-
sentation of §([1p,%p]) % m5. Since p*(L(6([v~"T p,vp]);T)) contains
an irreducible constituent of the form ¢ ([V_I"I’Tf1 p,v°p]) ® m, it follows that
73 = L(O([v="F p.v*pl);0n). Thus

Y-

L[ p,vop]);7) < 8([v=p,v"p)) % L(6([v™ "% p,v%p]); o)
< 8([vp, vp]) x 6([* p, vPp]) % L(S([v™ T p,v%pl); o),

and in the same way as in the previously considered case we obtain

L[~ p,vp])i7) < 8([v™p, v0p]) % o

Results obtained in this section lead to

Theorem 3.5. Suppose that 0 < a < b and for o such that v¥p X Oeyusp
reduces we have a — o € Z. The induced representation §([v=%p,°p]) x o
is irreducible if and only if {2a + 1,2b + 1} < Jord,(c) and for every x €
Jord,(0)n(2a+1, 2b+1] such that z_ is defined we have €((x_, p), (z, p)) = —1.

4 Case %

Suppose that % < b b— % is a non-negative integer, and for « such that
V¥ PX 0O eysp Teduces we have a—% € 7. In this section we determine reducibility

for §([vzp, vbp]) % o.

Proposition 4.1. Suppose that 2b+1 € Jord,(c), e(min(Jord,(0)), p) = —1,
and for x € Jord,(o) n{(min(Jord,(c)),2b+ 1| such that x_ is defined we have

e((z_, p), (z,p)) = —1. Then the induced representation §([vzp,1°p]) x o is
irreducible.
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Proof. Note that p*(o) does not contain an irreducible constituent of the
form 6([v*p,1¥p]) @ 7 for x < § and y € Jord,(c) N [min(Jord,(c)), 2b + 1].
Now the proof follows same lines as in the one of Proposition 3.1. m

The following result is used several times and might be of independent
interest.

Lemma 4.2. Let 0/ € G,y denote a discrete series and let us denote the
corresponding admissible triple by (Jord/,a(’:usp,e’). We denote the domain
of € by D. Suppose that for p' € R(GL) we have Jord;/ # @, 2c+1 =
min(Jord,) is even, and €' (2c + 1,p') = 1. Let D' = D\({(2c + 1,p)} u
{((2c+1,0), (2, 0)), (2, 0), 2c+1, ") : x € Jord,, x # 2c+1}). Theno' is a
subrepresentation of 5([1/%/), vepl) xa”, for a discrete series 0" corresponding
to the admissible triple (Jord \{(2c + 1,p)}, 0L, €"), where €' : D" — {£1}
1s defined by:

o "(x,p) = €(x,p1) for (z,p1) € D such that (x_, p1) # (2c+ 1,p),

i 6”((1.*7 pl)v (‘TnOl)) = 6/((‘%*7 pl)? (.T,,Ol)) fO?“ ((xﬂ Pl), (:U7p1)) € D/;

o If Jord:), # {2c + 1} and Ty, € Jord:), is such that (Tpmim)- = 2¢ + 1,
then € (xmin, p') = €((2¢ + 1, p'), (T1min, '))-
(

Proof. It can be easily verified that (Jord \{(2c + 1, p')}, 0%, €") is an ad-
missible triple. From € (2¢ + 1,p') = 1 follows that there is an irreducible
representation m; such that o’ is a subrepresentation of §([v2p/,v%p']) % 7.
Suppose that m; is not a discrete series representation. Then there is an
embedding m — 0([t¥' p1,v¥2p1]) % ma, where y; + y2 < 0, which leads to
o' — §([v2p,vop 1) x S([v7 pr, v#2 pr]) xa. TES([v2 !, vop ) x S([17 pr, 172 py )
is irreducible or (y2, p1) = (—3, '), this immediately contradicts the square-
integrability of o’. If p; =~ p/ and % < Y9 < ¢, we have an embedding
o — vv2p x §([vzp, vop]) x ([v¥rpl, v 1)) x my, which implies 2y, + 1 €
Jord, (¢'), a contradiction.

Thus, m; is a discrete series representation and we denote the correspond-
ing admissible triple by (Jord(m1), 07y, €x, ). Obviously, Jord(m;) = Jord(c")
and o7, = 0, To prove that m = ¢” we only consider the case Jord, #
{2¢ + 1} and show €, (Zmin, p') = €"(Tmin, p'), other properties can be ob-
tained from the embedding o’ < §([v2p/,v%p']) x m; and definition of ¢”, in

the same way as in [10, Section 8§].
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Ife'((2c+1,0), (Tmin, p')) = 1, p*(0’) contains an irreducible constituent
of the form §([v<p/, v p']) ® . Using the structural formula we obtain

Tmin—1

that w* () contains an irreducible constituent of the form &([v2 o/, v ™5 p'])®
7, and from [10, Proposition 7.4] we get €., (Zmin, p') = 1.
On the other hand, if €, (Tmin, p/) = 1 then 7 is a subrepresentation

Zmin—1

of an induced representation of the form 8([v2p/, v "8 p']) x m2, and o' is

min —

a subrepresentation of §([vzp,v "5 p']) x 8([v2p’,vp']) x m. Now [10,
Proposition 7.1] implies €' ((2¢ + 1, p'), (Zmi, p')) = 1. Consequently, €'((2¢ +
1,0, (min, p')) = —1 implies €, (T, p’) = —1 and we have e, (T, p/) =
€ (Tmin, p')- Thus, m = o”. O

Lemma 4.3. Suppose that 2b+1 ¢ Jord,(o). Then the induced representation
§([vzp,v*p]) % o reduces.

Proof. If Jord,(c) # ¢ and min(Jord,(c)) < 2b + 1, the lemma follows in
the same way as Lemma 3.2. In other cases, the previous lemma can be
used to obtain a discrete series subrepresentation of §([v2p,v%p]) x o, so
5([vzp, v*p]) o reduces. O

Lemma 4.4. Suppose that e(min(Jord,(0)),p) = 1. Then the induced rep-
resentation 8([v2p,vPp]) x o reduces.

Proof. By the previous lemma, it is enough to consider the case 2b + 1 €
Jord,(c). Again we denote min(Jord,(c)) by Zmin. By Lemma 4.2, there is
a discrete series o such that o is a subrepresentation of 8([v2 p, v*minp]) x o
Also, it follows from the structural formula that ¢ is a unique irreducible
subquotient of 8([12 p, v®=inp]) x ¢/ which contains an irreducible constituent
of the form &([v2p, v™mnp]) ® 7 in the Jacquet module with respect to the
appropriate parabolic subgroup.

If z,in < b, in the same way as in the proof of Lemma 3.2 we obtain that

L(5([v"p, Vzmizflp]); o) is a subquotient of d([v2p, vp]) x o.

Suppose that z,;,, = b, and denote by 7 an irreducible tempered sub-
representation of ([ ?p, 1%p]) x ¢’ such that p* () contains 6([v2p, vbp]) x
5([v2p, v*p]) @0’ Since 7 is contained in 8([v2p, 12p]) x 8([vCp, v 2p]) x o,
there is an irreducible subquotient m; of §([v~p, v"2p]) x ¢’ such that 7 is
contained in §([r2p, 1%p]) x 7. By the definition of 7, z*(m;) has to contain
5([vzp, vominp)) @ o, so m = 0. O

12



Lemma 4.5. Suppose that 2b + 1 € Jord,(c) and e(min(Jord, (o)), p) = —1.
If there is an x € Jord,(c) n (min(Jord,(c)),2b + 1| such that x_ is defined
and €((z_, p), (z,p)) = 1, then the induced representation 6([v2p,vbp]) x o
reduces.

Proof. Let us denote by y the minimal element of Jord, (o) n(min(Jord,(c)), 20+
1] such that y_ is defined and €((y_, p), (v, p)) = 1. Then there is a discrete
series o such that o is a subrepresentation of 5([V‘y’Tﬂp, y%p]) x o1, and
an irreducible subquotient m; of §([v2p, v p]) x oy such that o is a sub-
representation of 8([v2p, Vy%lp]) X TTq.

If 7, is tempered, since p*(8([v2p, VyT_lp]) X1y ) contains 5([V_%p, ny_lp])®
o1, it follows that p* (7 ) has to contain an irreducible constituent of the form
S([vep,v s p) @m. If y_ = min(Jord,(o)), it follows that m is a subrep-
resentation of an induced representation of the form &([v2 p, VT pl) x m.
Otherwise, it follows that 7, is a subrepresentation of an induced represen-
tation of the form o([v~ =t 3 v p]) x © and, consequently, there is an
irreducible subquotient 7’ of §([v~ ot P, s p]) » 7 such that m; is a sub-

representation of §([v s p, T p]) x 7'. In any case, using the embedding

o — o([vep, v's p]) x m we get a contradiction with the description of the
e-function of . Consequently, m; is non-tempered.

If y- = min(Jord,(¢)), in the same way as in the proof of Proposition
3.1 we obtain that L(é([u‘yfﬂp, v=2p|);01) is a unique irreducible non-
tempered subquotient of §([v2p, I/%p]) x o1. If y- > min(Jord,(0)), in
the same way as in the previous section we conclude that an irreducible

non-tempered subquotient of 5([y% 0, i p]) x o1 is either isomorphic to
L((S([V*y’Tflp, v=2p]); o) or to L(8([v~ ), v=2p]); o), where o is a unique
discrete series subrepresentation of §([v et 0, Vyb;lp]) x oy If

_(y)-—1

= L((qu p,V_%p]);Ug),

we get that o is a subrepresentation of an induced representation of the form

) ([V(yi);—l p, v 7 p]) x m, which contradicts the minimality of 3.
Thus, m = L(6([v="% p,v~%p]);01) and the rest of the proof follows in
the same way as in the proof of Lemma 3.4. O

Let us now summarize the results of this section.
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Theorem 4.6. Suppose that % <b b-— % 1S a non-negative integer, and
for a such that v®p x o5y Teduces we have o — % € Z. The induced rep-
resentation 8([v2p,1°p]) % o is irreducible if and only if 2b + 1 € Jord,(o),
e(min(Jord,(0)), p) = —1, and for every x € Jord,(c) n[min(Jord,(c)), 2b+1]

such that x_ is defined we have e((z_, p), (z,p)) = —1.

5 The remaining case

In this section we determine reducibility for §([v%p, v°p]) x o, where 1 < a < b
and for a such that v“p % oy, reduces we have a — o € Z.

The following result can be proved in the same way as Proposition 3.1.
Proposition 5.1. Suppose that one of the following holds:
1. [2a—1,2b+ 1] n Jord,(0) = &,

2. 2b+1 € Jord,(o) and for every x € [2a+1,2b+ 1] n Jord,(o) such that
x_ is defined and x_ = 2a — 1 we have €((z_, p), (z,p)) = —1.

Then the induced representation 5([v%p,°p]) x o is irreducible.

Lemma 5.2. Suppose that 2b+1 ¢ Jord,(o) and [2a—1,2b+ 1)~ Jord,(o) #
. Then the induced representation 6([v*p,v°p]) x o reduces.

Proof. Let us write © = max([2a—1,2b+ 1) n Jord,(0)). Following the same
lines as in the proof of Lemma 3.2, we deduce that §([v%p, °p]) x o contains
L(6([v="% p,v=p]); 01), where oy is a unique discrete series subrepresenta-
tion of 6([v"% p, vbp]) x 0. O

Lemma 5.3. Suppose that 2b + 1 € Jord,(0) and there is an x € [2a +
1,20 + 1] n Jord,(o) such that x_ is defined, v > 2a — 1, and we have
e((x_, p), (x,p)) = 1. Then the induced representation 5([vp,v°p]) x o re-
duces.

Proof. If e(((2b +1)_,p), (2b+ 1,p)) = 1, in the same way as in the proof of
(2b+1)_—1

Lemma 3.2 we obtain that §([v%p, v°p]) xo contains L(6([v— 2 — p,v=%p]); T),
D)) 7

where 7 is an irreducible tempered subrepresentation of §([v
o given by Lemma 3.3.
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Let us now assume that €(((2b + 1)_,p), (20 + 1,p)) = —1, and let y =
max{z € [2a + 1,20 + 1] n Jord,(0) : = = 2a — 1,€e((x_, p), (z,p)) = 1}.
Then there is a discrete series oq such that o is a subrepresentation of
5([V_%4p, V%p]) x 0. Let us now discuss the case y_ > 2a — 1.

We show that §([v%p, v°p]) x o contains

M&@*mf;dhﬁbi?ﬁwﬂdhm)

Since §([v~ ]) S([v="= 1p, v=%p|) is irreducible, it follows at once
that L(é([ b, v'T pl), 8([v="F p,v=p]); 01) is a subquotient of

3([v°p, " p]) % L(3([v~1p, "7 p]); o),

and the Jacquet module of L(5([v~°p, V%p]), 6([V_%p, v=%pl); 1) with re-
spect to the appropriate parabolic subgroup contains

o[ T pr ) @ 6([vp, 0T p]) @ 0. (1)

Note that L(5([r~°p, V%p]); 01) is a subquotient of

1

S([v*% p.vPp]) x 8([v™ T p, v T p]) w0, (2)

y—1

Since pu*(L(5([v~"p, ny_lp]);al)) > §([vtp, v’ p]) ® oy, using the struc-
tural formula and classification of discrete serles we deduce that there is
a discrete serles subrepresentation o4, of 6([v~ "7 o' p]) X o1 such that
L(6([v=tp,v"7 p]):01) is a subquotient of §(["2 p,1'p]) x o4s. Also, it
is easy to see that 5([V_bp,uy2;1p]) ® o1 appears with multiplicity one in
1*(8([1"2 p,vp]) % 04s), so L(5([v~tp, v"T p]): 1) appears at most once in
the composition series of ¢ ([Z/yT+1 p,V°p]) x ags.

Let us prove that L((S([V‘bp,uy%lp]);al) appears at least twice in the
composition series of the induced representation (2).

In R(G) we have

o([v PvV ’pl) x o([v 7%,0 V%p]) X 01 =
(v p.vtpl) x O([V*% p, v T pl) % o+

_y—1 y-+1

LS([v™"% p,v"T p]), 8([v"% p,v"p])) % 0.

y-+1
2
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From
- y—1 — y-—1 =
L3([vp."% pl)ion) < 0([v "0, "% p]) x 8([v"% p,v"= pl) = o,
we conclude that L(5([v~p, V%p]); 01) appears in (5([V*y’T_1p, v°p]) xé([u%ﬂp,
y—1
vz pl) xo;.
On the other hand, by Proposition 5.1 we have

+1

LG([vp, 0T pl)son) = 8([v™"% p,v"= p]) x 8([v " p, v~ "% p]) % 0

so there is an irreducible representation

y-—1 y—1

meU@@fﬁwwﬁwhﬂh%%w%»&PJ%@WMVM@%%WTﬂﬂ

such that L((S([V PV ,0]) o1) 1s a subrepresentatlon of m x 01. Suppose

that m, = §([v~ "z ov bo]) x 6([v* 2 o v'T p]) Using Proposition 5.1 again,
we have

—1 y-—1 y-+1 y 1

LG([v"p,v" 7 pl)son) = 8([v™"7 p,v’p]) x 6([v"2 pv
= §([v="F p,vPp)) x 8([v "% p,v™ "% p]) @ o,

so there is an irreducible representation

yt1

o€ (LOO([v™"F p, v "% p)),6([v™ "7 p,o"0))), 6([v™"% p, 1))}

such that L(3([v~tp, "= p]);01) is a subrepresentation of w5 x oy. If

o = L(S([v™" 7 p,v™ "% ), 8([v T p,p])),

we get that u*(L(5([v~p, VyT_lp]); 01)) contains an irreducible constituent of
the form 6([v="% p,v~"2" p])®m, which is impossible since L(§([vp, "7 p]): 01)
is a subquotient of 5([V_%p, Pp]) xo1. On the other hand, Theorem 3.5 im-
plies that §([v= "2 p, v*p]) %07 reduces, so it can not contain L(8([v~"p, 1'% p]); 1)
as a subrepresentation. This gives o %0 ([z/l_y%1 p,V°p]). 1

L -

Thus, my = L(6([v~"7 ﬂﬂ/ = P]) o[y p,v*pl)), s0 L(3([v"p, v pl); on)
also appears in L(5([v="2 p, "% p]),8([v"2 p, 1*p])) % o1.
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Consequently, L(5([v"p, VyT_lp]); 1) is a subquotient of (5([1/%7“@ 1Pp]) x
o, 50 L(§([v="p, v ;lp]), 5([V_%p, v=%p|); 01) is a subquotient of

3([vp, v T pl) x 8([V*F p, %)) % o,

and there is an irreducible representation

y——1 y-+1

5 € {L(0([v"p, v = p]) 6([v = p, v"p))), ([v7 0, v p])}

such that L(§([v=p,v = 7 p|), 0([v —5 ), v~ %]); 01) is a subquotient of w3 % 0.
Now (1) implies 3 = 6([v%p, °p]).

If y. = 2a—1, it ¢ ca n be proved in the same way that 6([v%p, vbp]) x o
contains L(§([v="p, v Ea p]); 1), details being left to the reader. O

This leads to

Theorem 5.4. Suppose that 1 < a < b and for o such that v¥p X Oeysp
reduces we have a — o € Z. The induced representation 5([v°p,°p]) x o is
wrreducible if and only if one of the following holds:

1. [2a —1,2b+ 1] n Jord,(0) = &,

2. 2b+1 € Jord,(o) and for every x € [2a+1,2b+ 1] n Jord,(o) such that
x_ is defined and x_ = 2a — 1 we have €((x_, p), (z,p)) = —1.
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